79 research outputs found

    Mother nature's tolerant ways: Why non-genetic inheritance has nothing to do with evolution

    Get PDF
    Recently a number of theorists have suggested that evolution can use non-genetic or environmental inheritance to pass on adaptations (e.g. Mameli, 2004). Furthermore, it has been suggested that non-genetic, or environmental factors, can play a central role in the process of evolution that is not captured by the neo-Darwinian view which places natural selection centre-stage (e.g. Odling-Smee, Laland & Feldman, 2003). In this paper we present and clarify neo-Darwinian theory and then take issue with the notions of contemporary gene-centred selection and inheritance that non-genetic inheritance theorists have used. We claim that they have misunderstood the distinction and relationship between intrinsic and extrinsic inheritance and we clarify this with a number of examples from the behavioural and biological sciences. According to this analysis there is no such thing as biologically independent non-genetic inheritance, all extrinsic inheritance is a consequence of traits and dispositions that are intrinsic to an organism and intrinsic design can only be explained through neo-Darwinism. We point to the implications this view has for current conceptions of cultural evolution

    Designed calibration: Naturally selected flexibility, not non-genetic inheritance (Commentary)

    Get PDF
    Jablonka and Lamb have presented a number of different possible mechanisms for finessing design. The extra-genetic nature of these mechanisms has led them to challenge orthodox neo-Darwinian views. However, these mechanisms are for calibration and have been designed by natural selection. As such they add detail to our knowledge, but neo-Darwinism is sufficiently resourced to account for them

    [Open peer commentary] Is genomics bad for you?

    Get PDF
    The plasticity of the genome complicates genetic causation, but should be investigated from a functional perspective. Specific adaptive hypotheses are referenced in the target article, but it is also necessary to explain how the integrity of the genome is maintained despite processes that tend towards its diversification and degradation. These include the accumulation of deleterious changes and intra-genomic conflict

    Is this conjectural phenotypic dichotomy a plausible outcome of genomic imprinting? (Commentary)

    Get PDF
    What is the status of the dichotomy proposed and the nosological validity of the contrasting pathologies described? How plausibly can dysregulated imprinting explain the array of features described, compared with other genetic models? We believe that considering alternative models is more likely to lead in the long term to the correct classification and explanation of the component behaviours

    Phylogeographic separation and formation of sexually discrete lineages in a global population of Yersinia pseudotuberculosis

    Get PDF
    Yersinia pseudotuberculosis is a Gram-negative intestinal pathogen of humans and has been responsible for several nationwide gastrointestinal outbreaks. Large-scale population genomic studies have been performed on the other human pathogenic species of the genus Yersinia, Yersinia pestis and Yersinia enterocolitica allowing a high-resolution understanding of the ecology, evolution and dissemination of these pathogens. However, to date no purpose-designed large-scale global population genomic analysis of Y. pseudotuberculosis has been performed. Here we present analyses of the genomes of 134 strains of Y. pseudotuberculosis isolated from around the world, from multiple ecosystems since the 1960s. Our data display a phylogeographic split within the population, with an Asian ancestry and subsequent dispersal of successful clonal lineages into Europe and the rest of the world. These lineages can be differentiated by CRISPR cluster arrays, and we show that the lineages are limited with respect to inter-lineage genetic exchange. This restriction of genetic exchange maintains the discrete lineage structure in the population despite co-existence of lineages for thousands of years in multiple countries. Our data highlights how CRISPR can be informative of the evolutionary trajectory of bacterial lineages, and merits further study across bacteria.Peer reviewe

    Elevated mitochondrial genome variation after 50 generations of radiation exposure in a wild rodent

    Get PDF
    Currently, the effects of chronic, continuous low dose environmental irradiation on the mitochondrial genome of resident small mammals are unknown. Using the bank vole (Myodes glareolus) as a model system, we tested the hypothesis that approximately 50 generations of exposure to the Chernobyl environment has significantly altered genetic diversity of the mitochondrial genome. Using deep sequencing, we compared mitochondrial genomes from 131 individuals from reference sites with radioactive contamination comparable to that present in northern Ukraine before the 26 April 1986 meltdown, to populations where substantial fallout was deposited following the nuclear accident. Population genetic variables revealed significant differences among populations from contaminated and uncontaminated localities. Therefore, we rejected the null hypothesis of no significant genetic effect from 50 generations of exposure to the environment created by the Chernobyl meltdown. Samples from contaminated localities exhibited significantly higher numbers of haplotypes and polymorphic loci, elevated genetic diversity, and a significantly higher average number of substitutions per site across mitochondrial gene regions. Observed genetic variation was dominated by synonymous mutations, which may indicate a history of purify selection against nonsynonymous or insertion/deletion mutations. These significant differences were not attributable to sample size artifacts. The observed increase in mitochondrial genomic diversity in voles from radioactive sites is consistent with the possibility that chronic, continuous irradiation resulting from the Chernobyl disaster has produced an accelerated mutation rate in this species over the last 25 years. Our results, being the first to demonstrate this phenomenon in a wild mammalian species, are important for understanding genetic consequences of exposure to low-dose radiation sources. © 2017 John Wiley & Sons Ltd

    Revealing mammalian evolutionary relationships by comparative analysis of gene clusters

    Get PDF
    Many software tools for comparative analysis of genomic sequence data have been released in recent decades. Despite this, it remains challenging to determine evolutionary relationships in gene clusters due to their complex histories involving duplications, deletions, inversions, and conversions. One concept describing these relationships is orthology. Orthologs derive from a common ancestor by speciation, in contrast to paralogs, which derive from duplication. Discriminating orthologs from paralogs is a necessary step in most multispecies sequence analyses, but doing so accurately is impeded by the occurrence of gene conversion events. We propose a refined method of orthology assignment based on two paradigms for interpreting its definition: by genomic context or by sequence content. X-orthology (based on context) traces orthology resulting from speciation and duplication only, while N-orthology (based on content) includes the influence of conversion events

    High-Resolution Mapping of Evolutionary Trajectories in a Phage

    Get PDF
    Experimental evolution in rapidly reproducing viruses offers a robust means to infer substitution trajectories during evolution. But with conventional approaches, this inference is limited by how many individual genotypes can be sampled from the population at a time. Low-frequency changes are difficult to detect, potentially rendering early stages of adaptation unobservable. Here we circumvent this using short-read sequencing technology in a fine-grained analysis of polymorphism dynamics in the sentinel organism: a single-stranded DNA phage ΦX174. Nucleotide differences were educed from noise with binomial filtering methods that harnessed quality scores and separate data from brief phage amplifications. Remarkably, a significant degree of variation was observed in all samples including those grown in brief 2-h cultures. Sites previously reported as subject to high-frequency polymorphisms over a course of weeks exhibited monotonic increases in polymorphism frequency within hours in this study. Additionally, even with limitations imposed by the short length of sequencing reads, we were able to observe statistically significant linkage among polymorphic sites in evolved lineages. Additional parallels between replicate lineages were apparent in the sharing of polymorphic sites and in correlated polymorphism frequencies. Missense mutations were more likely to occur than silent mutations. This study offers the first glimpse into “real-time” substitution dynamics and offers a robust conceptual framework for future viral resequencing studies

    Dynamics of mitochondrial heteroplasmy in three families investigated via a repeatable re-sequencing study

    Get PDF
    Background: Originally believed to be a rare phenomenon, heteroplasmy - the presence of more than one mitochondrial DNA (mtDNA) variant within a cell, tissue, or individual - is emerging as an important component of eukaryotic genetic diversity. Heteroplasmies can be used as genetic markers in applications ranging from forensics to cancer diagnostics. Yet the frequency of heteroplasmic alleles may vary from generation to generation due to the bottleneck occurring during oogenesis. Therefore, to understand the alterations in allele frequencies at heteroplasmic sites, it is of critical importance to investigate the dynamics of maternal mtDNA transmission. Results: Here we sequenced, at high coverage, mtDNA from blood and buccal tissues of nine individuals from three families with a total of six maternal transmission events. Using simulations and re-sequencing of clonal DNA, we devised a set of criteria for detecting polymorphic sites in heterogeneous genetic samples that is resistant to the noise originating from massively parallel sequencing technologies. Application of these criteria to nine human mtDNA samples revealed four heteroplasmic sites. Conclusions: Our results suggest that the incidence of heteroplasmy may be lower than estimated in some other recent re-sequencing studies, and that mtDNA allelic frequencies differ significantly both between tissues of the same individual and between a mother and her offspring. We designed our study in such a way that the complete analysis described here can be repeated by anyone either at our site or directly on the Amazon Cloud. Our computational pipeline can be easily modified to accommodate other applications, such as viral re-sequencing

    Genomic characterisation of Eμ-Myc mouse lymphomas identifies Bcor as a Myc co-operative tumour-suppressor gene

    No full text
    The Eμ-Myc mouse is an extensively used model of MYC driven malignancy; however to date there has only been partial characterization of MYC co-operative mutations leading to spontaneous lymphomagenesis. Here we sequence spontaneously arising Eμ-Myc lymphomas to define transgene architecture, somatic mutations, and structural alterations. We identify frequent disruptive mutations in the PRC1-like component and BCL6-corepressor gene Bcor. Moreover, we find unexpected concomitant multigenic lesions involving Cdkn2a loss and other cancer genes including Nras, Kras and Bcor. These findings challenge the assumed two-hit model of Eμ-Myc lymphoma and demonstrate a functional in vivo role for Bcor in suppressing tumorigenesis.We acknowledge the following funding agencies: Leukaemia Foundation of Australia, Arrow Bone Marrow Transplant Foundation, National Health and Medical Research Council Australia, Cancer Council Victoria, Victorian Cancer Agency, Australian Cancer Research Foundation, Peter MacCallum Cancer Centre Foundation, National Institutes of Health
    corecore